Free Energy: The Alexkor Zero-Back-EMF Coils

Alex in Russia who has shared several of his motionless pulse-charging systems for batteries, now shares his design which does not appear to have any back-EMF effect on the primary coil. If that is the case, then any increase in output current draw does not have a corresponding increase in the current flowing through the primary coil. That is completely different to the way in which a conventional transformer operates.

The arrangement is somewhat like the Transmitter / Receiver arrangement of Don Smith and while it looks to be a simple arrangement, is isn’t. Alex draws his coil configuration like this:

             

Here, his chosen form of construction is a frame of twelve lengths of 20 mm diameter plastic pipes – four at the top, four at the bottom and four verticals. Each pipe is filled with ferrite powder and there is an output coil wound on each of the four vertical pipes. Suspended in the centre is the primary coil which is 15 mm in diameter. All five coils are wound using 0.5 mm diameter enamelled copper wire (swg 25 or AWG #24). While Alex’s drawing shows a single strand of wire, the actual arrangement for the four output coils is that they are wound as a single layer bi-filar coil:


For this, the output coils are wound with two strands of wire side by side, in a single layer along the length of the plastic pipe. Then, the start of one wire is connected to the end of the other wire. As the coils are filled with ferrite, they can operate at high frequency, when the 15 mm primary coil is fed with either DC pulses or an AC sine wave. Each output coil can provide a separate output or the output coils can be connected in series to give a higher voltage or connected in parallel to give a higher output current.

Alex also shows how ferrite toroids can be used, even with 220V mains, to give back-EMF-free transformer operation. If the input frequency is as low as the mains, then the toroids may be iron-dust types or they can be constructed from iron shims in the same way that ordinary mains transformers are constructed. However, please understand clearly that the current flowing through any coil connected across a high voltage source such as 110V or 220V and using any of the following configurations, is limited by the impedance of the coil itself. ‘Impedance’ is effectively ‘AC resistance’ at the frequency of the AC voltage supply. If the coil impedance is low, then the current flowing through the coil will be high and since the power dissipated by the current flow is Voltage x Current, the power dissipation with increased current goes up very quickly when the voltage level is as high as 220 volts. The power dissipation is in the form of heat which means that with excessive power dissipation, the wire in the coil is liable to melt or ‘burn out’ in an impressive flash of flame, smoke and blackened wire. Consequently, the coil winding needs to have many turns and the wire diameter needs to be sufficient to carry the current flow – the wire table on page 1 of the Appendix shows the current which can be carried by each size of wire when wound into a coil. If there is no back-EMF effect with the following configurations, then the current in the primary winding connected across the mains will not be affected by the other coils, so remember that when preparing the primary coil.

The first arrangement uses three toroids to give four separate outputs. The amount of current which can be drawn from any secondary depends on the amount of magnetic flux which can be carried by the magnetic core or cores between the primary coil and that particular secondary coil. Obviously, the output current draw will also be limited by the current-carrying capacity of the wire used in the secondary coil. If that level of current is exceeded for any length of time, then the insulation of the wire will fail, turns will short-circuit together, the coil impedance will drop, the current increase further and the coil will burn out – so, common sense is called for


Here, the primary coil “1” is wound on a toroid which is horizontal in the picture above, and the secondary coils “2” are wound on toroids which are shown as vertical in the drawing. The important point here is that the toroids with the secondary coils, touch the primary coil toroid at right angles, that is, at 90-degrees. For convenience of winding the coils, any toroid can be assembled from two half toroids which allows the coil to be wound separately and when completed, slid on to one of the C-shaped half toroids before the two halves are placed together to form the complete toroid.

The second arrangement uses three toroids:


The third arrangement uses four toroids in a more powerful arrangement where the magnetic flux carrying capacity of the transformer is doubled as the cross sectional area of the toroids inside each coil is doubled. This is a more difficult arrangement to construct and if the coils are to be wound on a separate coil winder, then the toroids each need to be made from one half-toroid plus two quarter toroids so that the coils can be slipped on to two separate quarter-toroid sections which are curving in opposite directions, unless of course, the inside diameter of the coils is a good deal larger than the toroid cross section (which reduces the number of turns for any given length of coil wire):


If these simple transformer arrangements operate as back-EMF-free devices as claimed, then the current draw from any, or all, of the secondary windings does not have any effect on the current flowing through the primary coil. This is quite unlike present day commercial transformers which are wound symmetrically, which in turn causes the current draw in the secondary coil to force an increased current in the primary winding.

Alex (www.radiant4you.net) also shows another arrangement which uses seven toroids. He states that this arrangement is also free from the energy-wasting back-EMF designs used at present in most commercial items of equipment. He specifies that the intended operating frequency is 50 Hz which is the frequency of the mains as the difference between 50 Hz and the 60 Hz used in America is not significant in any way. This frequency suggests that the toroids could readily be made of iron as in commercial transformers. The prototype was wound with 0.5 mm diameter wire and aimed at a power level of 100 watts. The capacitors are high-power oil filled with capacitances up to 40 microfarad and rated at 450V when using 220V mains input. The tuning is very much like that of the RotoVerter shown in chapter 2. The physical layout is:


The central toroid is wound all around its circumference as indicated by the blue colour. This winding is fed directly with the input current source which would normally be from the mains or from a mains transformer, probably at a lower voltage.

There are then twelve output coils, six shown here in green and six shown in red. For best operation, each of these output coils need to be ‘tuned’ to the central coil and that needs to be done by altering the capacitor size by experiment to get the best performance from each coil. When properly set up, increasing the current draw from any of the output coils does not increase the power flowing into the central input coil. This contradicts what is normally taught in schools and universities as they are only familiar with symmetrically wound transformers and motors where increased output current does indeed oppose the input power, causing increased input current and heat waste. The circuit is:


The blue coil has the power input at “A” and the capacitor in series with each coil is there to get all of the windings to resonate at the same frequency. The items “B” and “C” represent the useful load being powered by each coil, although, obviously, only two of the twelve output coils are shown in the circuit diagram above, and there are an additional five green and five red coils which are not shown in the circuit diagram.


It is probably worth remembering that adding a magnet to a toroid or closed-loop core transformer can boost the output provided that the permanent magnet is not strong enough to saturate the core completely and prevent oscillation of the magnetic flux. This has been shown by Lawrence Tseung, Graham Gunderson and others, and so it might be worth while to experiment further with these configurations along the lines shown in the video here.

Two types of power generation technology (generator) of Nikola Tesla
  1. 🔹  Radiant energy
  2. 🔹  AC generator - Free Energy

Tesla Technology

🔹 Tesla Technology and "Free Energy" in practical application


The Easiest Version:
Alexkor has produced a simplified Lenz-law-free design, using commercial toroids already wound as step-down mains transformers. One supplier is here with transformers of this type on offer:


The technique is to remove the plate covering the central opening and connecting the 220V and 110V windings in series. Two of these transformers are used, each of them connected with their 220V and 110V windings wired in series and then the toroids either placed side by side or alternatively stacked on top of one another with a 1 millimetre thick sheet of plastic between them.

In the configuration where the toroids “A” and “B” are placed side by side, a power extraction winding “D” is wound between them:


In the case where the toroids “A” and “B” are arranged in a stack with 1 mm plastic sheet between them, the power extraction winding “D” is wound around the two toroids, enclosing them both:


While the winding “D” is shown as a narrow strip in the diagram, that is only to make the drawing easier to understand as in reality, the winding “D” is continued all the way around the whole of the circumference of the toroids and it can be many layers deep to suit the desired output voltage.

Toroid “A” has a tuning capacitor “C1” which is adjusted in value to achieve resonance in that circuit as that minimises the current flowing into toroid “A” from the mains.

Toroid “B” has a capacitor “C2” which is adjusted to give the highest output voltage (typically 600 volts) coming from toroid “B”. The purpose of toroid “B” is to divert the reverse magnetic flow in Toroid “A” and so, produce an efficient working system. The load “L” is in theory, a dummy load, but in reality there is no reason why it should not be considered to be an actual working load if that output is convenient to use.

The output winding “D” is free of the Lenz law effect and the input current from the mains is not affected in any way when the current draw from coil “D” is increased, or even short-circuited. Alexkor stresses the fact that as the toroids are supplied already wound, this is actually a very easy design to replicate.

Homemade Generator Plan- Ultimate Technology


🔹 Version from Nikola Tesla's "Magnifying Transmitter"
🔹 The "tension" for "electricity fractionation" to occur is the Earth's Potential Potential. To be precise, it is the tension of the Ether, and the electricity is the dynamic polarization of the Ether.
🔹 During "Electricity segment", the magnetic field collapses several times in short periods of time. That leads the voltage V = Φ/t to reach infinity (V  ) when t  0
  • V - The electromotive force which results from the production or consumption of the total magnetic induction Φ (Phi). The unit is the “Volt”. Where t is the time of magnetic field collapse from maximum to complete collapse.
  • Research scholars also call it Tesla's technology called Radiant Energy from Electronic Circuits, Impulse Technology.
🔹 There are also many other plans to create free energy generators including Self Powered AC Generator.

Post a Comment

Previous Post Next Post
Continue reading: